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Velocity Autocorrelation Function in Lattice 
Gases from the Ring Kinetic Theory. 
Comparison with Numerical Simulations 

R. Bri to  1'2 and G.  A.  van V e i z e n  3 

Received December 5, 1994; final January 30, 1995 

We obtain the complete time dependence of the velocity autocorrelation func- 
tion (VACF) for lattice gas cellular automata, using ring kinetic theory. This 
theory accounts for the simplest correlated collisions that improve on the 
molecular chaos approach, and yields a dosed equation for the VACF that we 
evaluate for both infinite and l'mite systems. We compare our analytical results 
with numerical simulations at all times, as well as with long-time results of the 
mode coupling theories, fmding a very good agreement for all times at all 
densities. 

KEY WORDS: Lattice gas automata; velocity autocorrelation function; 
diffusion coefficient; ring collisions. 

1. I N T R O D U C T I O N  

The velocity au toco r re l a t i on  func t ion  ( V A C F )  of a tagged part ic le  plays  a 
f u n d a m e n t a l  role in  the theory  of  n o n e q u i l i b r i u m  processes. I t  describes the 
t ime decay of  the velocity of  a tagged part icle  in  a fluid. The  t ime integral  
of  the V A C F  gives the self-diffusion coefficient, t h rough  a G r e e n - K u b o  
relat ion.  (1) F u r t h e r m o r e ,  it is possible  to relate quant i t ies  in n o n e q u i l i b r i u m  
with cor re la t ion  func t ions  in  equ i l ib r ium,  like the V A C F ,  via the Onsage r  
hypothesis.  I t  was believed, based on  the B o l t z m a n n  a p p r o x i m a t i o n ,  tha t  
the V A C F  had  an  exponen t i a l  decay in  time. This  is indeed  the case for 
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short times, where the Boltzmann approximation is valid. However, 
numerical simulations for hard spheres t2) showed that the time decay was 
not exponential but algebraic, of the form t -d/2, where d is the dimen- 
sionality of the system. Phenomenological explanation to this result was 
given by the mode coupling theory, 13) which applies only for long times. 

Lattice gas automata (LGA) t4~ are suitable models to study these 
phenomena because their simplicity makes it possible to carry out a 
theoretical analysis. They are discrete models created to obtain solutions of 
the Navier-Stokes equations/5~ As they behave at the level of the Navier- 
Stokes equations as real fluids, information from their VACF can be 
extrapolated to real fluids, in particular the long-time behavior. An impor- 
tant feature in this context is that the VACF in LGA can be simulated with 
very high statistical accuracy using the so-called moment propagation 
method, ~6"7J which is an exact algorithm of enumeration of all possible tra- 
jectories of a tagged particle, given an initial configuration. At long times 
the simulations show an excellent agreement with the algebraic decay given 
by the mode coupling results ~8~ for two-, three-, and four-dimensional 
systems. 17'9"1~ Furthermore, the mode coupling theory has been adapted to 
LGA in finite systems, IIL~2) following the lines of ref. 13, by taking into 
account the contribution of sound modes and the finite set of allowed wave 
vectors. Again, the comparison with numerical simulations shows a very 
good agreement. 

In this paper we deal with the full time dependence of the VACF. In 
particular, we are interested in the crossover from the exponential regime 
(valid for short times) to the algebraic one (applicable for long times). 
These two regimes are well known and checked against numerical simula- 
tions. Furthermore, we will study the effects caused by finite system sizes. 
We use the recenty developed ring kinetic theory for lattice gases t14~ in its 
version for the tagged particle problems, t~5~ This theory only takes into 
account the simplest correlated ring collisions, yielding a closed expression 
for the VACF at all times (repeated ring theory or self-consistent ring 
theory will not be considered). We evaluate this expression, and show that 
only with this type of collision is it possible to give a very accurate answer 
for the VACF at all times, for both finite and infinite systems. The ring 
kinetic theory has been successfully applied to evaluate transport coef- 
ficients, ~ providing very good results: the difference from the simulated 
transport coefficients is less than 5 % (the Boltzmann approximation has 
deviations of around 20 % ). 

The plan of this paper is as follows. Section 2 recalls some definitions 
and general results about LGA, as well as the calculation of the VACF in 
the Boltzmann approximation. In the following section a brief summary of 
the ring kinetic theory is presented. In Section 4 we present the results 
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obtained with such theory for both infinite system size and for finite system 
size, comparing them with the available numerical simulations as well as 
with the results from mode coupling theory. 

2. L A T T I C E  G A S E S  

Lattice gases are systems in which both space and time are discrete. 
There are N particles, with positions belonging to the nodes of a 
d-dimensional regular lattice &o. At integer times, particles jump from one 
node to another, according to their velocities. Hence the nonzero velocities 
have unit size and discrete directions: ei, i = 1 ..... b, where b is called "num- 
ber of bits." The set of allowed velocities usually coincides with the set of 
nearest-neighbor vectors, and possibly there is a rest particle with e ;=  0. 
The state of a LGA is fully described by giving the occupation numbers 
{ni(r, t), r ~ &  o, i =  1 ..... b}, which take the value 1 if there is a particle at 
node r with velocity c; at time t, and 0 otherwise. 

The time evolution of a LGA consists of two steps: collision and 
propagation. First the collision step is performed according to certain colli- 
sion rules that conserve number and total momentum at each node. They 
are specified in the collision operator I(n),  which is a nonlinear function of 
the occupation numbers n~, in general a polynomial of degree b. After the 
collision step has taken place, the propagation is performed simply by 
moving a particle from node r to node r + e,., where e; is the velocity of the 
particle. Combination of collision and propagation gives the evolution 
equation for the occupation numbers: 

n,(r + c,, t + 1) = ni(r, t) + / ~ [ n ( t ) ]  (2.1) 

The first term on the right-hand side of this equation represents the 
propagation step, and the second term accounts for the collisions. If f 
denotes the equilibrium average occupation number f = (n i ( r ,  t ) ) ,  we can 
expand the collision operator in terms of fluctuations as 

I i [ n ]  = b ~ I f2(§ ) . 6n,~. . .  On,~ = g2~:, ) fin,, + s 
=l 2! --m...14. 

(2.2) 

where the fluctuations in the occupation numbers are ~ni(r, t ) =  ni(r, t ) - f  
The equilibrium relation L ( - f ) =  0 has been used in (2.2). Some properties 
of the /2  ~) coefficients can be found in the literatureJ ~5) 

In order to study the VACF we need to tag one of the fluid particles 
and register its trajectory. Furthermore, we have to specify the collision 
rules between the tagged particle and the fluid particles. There are many 
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ways to choose such rules, ~ but we will consider the so-called maximally 
random collision rules, in which the tag is redistributed randomly among 
the particles present at a node, regardless of whether a collision has taken 
place or not. These are the collision rules used in the numerical simula- 
tions t6,7) that we will compare with. For the tagged particle there is a 
dynamical equation equivalent to (2.1), but with n replaced by ~i (which is 
the occupation number of the tagged particle). Also, we define i and 
through an equation similar to (2.2) for tagged particles. In terms of these 
occupation numbers, the velocity of a tagged particle is simply v( t )=  
~'~'r,g cgr l i ( r ,  t). 

The ring kinetic theory is formulated in terms of the kinetic 
propagator/~, defined as 

/~0(r, t) =bV(fag(r, t) ~ffj(0, 0))  (2.3) 

where V is the number of sites of the lattice. The kinetic propagator is a 
correlation function evaluated at equilibrium (i.e., ( . . . )  is an average over 
an equilibrium ensemble). In terms of F, the VACF ~b(t) is defined as 

1 p 
~( t )=V~ cgxCjx(~Ar, t)~j(O,O))=-~X. CgxCj~ o.(r, t) (2.4) 

r, 0" r ,  U 

and the diffusion coefficient by a Green-Kubo formula, ~ i.e., by the time 
sum of ~(t), where the t =  0 term only counts half due to the discreteness 
of time: 

D = ~ ~b~(t) + �89 (2.5) 
t = l  

Prior to the ring kinetic theory, the diffusion coefficient had been only 
evaluated in the Boltzmann approximation, based on the molecular chaos 
assumption in which sequences of correlated collisions are neglected. (19) 
This approximation is simply obtained by keeping in (2.2) only the linear 
term in 6n, related with 12 el) Then the kinetic propagator is reduced to 0 ' '  

(2.6) 

Furthermore, for most of the existing LGA, one can prove that c is an 
eigenvector of g2 t~) with eigenvalue -co. In this case, simple algebra 
s h o w s  07)  

~bB(t) = ~b(0)( 1 - co)' (2.7) 
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that is, an e x p o n e n t i a l  decay of ~b(t). For the case of maximally random 
collision rules, 09 only depends on the density f and the number of bits b, 
but not on the detailed collision rules. O7) The value of 09 is then 

1 - - f  --I] l - - m = - -  [ 1 - - ( l - - f )  b (2.8) 
(b - 1 ) f  

Although the value for the diffusion coefficient given by the Boltzmann 
approximation [obtained using (2.5), (2.7), and (2.8)] differs less than 1% 
from the simulations, ~7) the qualitative behavior is wrong. Boltzmann 
predicts an exponential VACF for all times, as shown in Eq. (2.7), while 
the correct one for long times is algebraic, as predicted by mode coupling 
theory and shown in the simulations (see, however, next section). 

3. R ING T H E O R Y  FOR V E L O C I T Y  
A U T O C O R R E L A T I O N  F U N C T I O N  

The ring kinetic theory improves on the Boltzmann approximation by 
considering the simplest correlated collisions. These collisions consist of 
two particles colliding at a certain point at a certain time. Then they 
propagate independently, eventually colliding with other particles. Finally 
the two particles meet again, closing the c o r r e l a t e d  collision. The mathe- 
matical structure of such collisions will be made clear in this section. Here 
we summarize the results of the ring kinetic theory for the VACF presented 
in ref. 1 5, where a detailed description of this theory can be found. The ring 
theory gives an approximate closed expression for the propagator in 
Fourier space. In the cases described in Section 2, where c is an eigenvector 
of ff(~), it can be simplified to 

t - - I  

~b(t) = ~B(t) + b- ]  ~ r( 1 - -  co)  ~ -  l A x . o . R i j ,  k t (  t _ r - 1 ) A x ,  kt  
r = l  

(3.1) 

where Ax,/j is the x-component of 

Ao.= ~ ,. ,.5(2) (3.2) / .  ~'kaa ki  j 
k 

The coefficients c3~2) ~*gk are the quadratic terms in the fluctuation expansion of 
the tagged particle collision operator. They are the equivalent of (2.2) for 
tagged particles. The values of the coefficients Aq are independent of the par- 
ticular set of collision rules chosen, as it happened with the eigenvalue 09. 
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They can be found in ref. 15. In the expression for the VACF (3.1), we have 
used the ring operator, defined as 

f (1  - - f )  ~ r B  s Ri, ;,.. j, j,.(k, r) -~ ~ i,j,(q,r) S ] ( t ( q ) F ~ , j 2 ( k - q , r ) S ] ~ l ( k - q )  
q 

(3.3) 

where the sum over q vectors is restricted to the set of reciprocal lattice 
vectors. Furthermore, F B is the kinetic propagator of a fluid particle in the 
Boltzmann approximation [i.e., Eq. (2.6) with ~ 1  replaced by s t~] and 
S is the translation operator: S = exp(iq- e~). 

The ring term in Eq. (3.1) has the normal structure of the ring colli- 
sion term in the kinetic theory of continuum fluids. ~2~ It consists of three 
terms: a binary collision which is the origin of the correlated collision, 
accounted for by A.,.g ; then two particles propagating independently, given 
by two parallel propagators included in Ru, k l ( t - - r - -1) ;  finally, a recolli- 
sion of the two particles contributing with A,.k t. 

The ring theory, as expressed in Eq. (3.1) gives in the long-time limit 
the so-called full mode coupling theory, t~s~ This is a mode coupling theory 
in which all possible pairs of modes are included (both sound modes and 
shear modes) and the discreteness of the q-sum is maintained, so finite-size 
effects are taken into account in a straightforward manner. ~3~ The full 
mode coupling theory (and consequently the ring kinetic theory) shows 
very good agreement with the numerical simulations for intermediate and 
long times for the FHP-III  model. r  As the system size grows, the q 
spacing is reduced, and the q-sum can be replaced by an integral over the 
first Brillouin zone. Furthermore, if only the contributions from pairs of 
shear modes are taken (which is the dominant part), the VACF for FHP 
models reduces to 

~b(t) ( l - f )  x/~ 1 (3.4) 
16bf (v + D) t 

where v is the shear viscosity. We refer to this result as the asymptotic long- 
time tail. The onset time for this regime is some 10tmf, where/mr is the time 
between collisions. It is given by tmf= --1/ln(1--co), and co is defined in 
Eq. (2.8). In two-dimensional systems, however, Eq. (3.4) leads to an incon- 
sistency. The diffusion coefficient is obtained as the time integral of ~b(t) as 
t ~ oo, with the result that D ~ c~ as t---, oo, making Eq. (3.4) meaningless. 
This is also the case for the shear viscosity v. In order to solve this 
problem, Wainwright et al. ~2~ introduced a self-consistent mode coupling 
theory, where transport coefficients in Eq. (2.8) depend on time. This yields 
a self-consistent equation that, when solved, shows that the decay of ~b(t) 
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is no longer algebraic, but proportional to {t[log(t/ts)]l/2} - ' ,  slightly 
faster than t - l .  This is called the super-long-time regime. There is numeri- 
cal evidence of the {t[log(t / t , )]  ~/2}- ~ decay.(22~ However, as the time t, is 
estimated to be some 10 20 mean free times, the super-long-time regime is 
far from the actual computer power. 

To summarize, the temporal behavior of the VACF is the following. 
First, for few mean free times the VACF shows an exponential decay as 
predicted by Eq. (2.7). At longer times (as will be discussed in the next 
section) the VACF is given by the full mode coupling theory, with sound 
modes included. The contribution of the sound modes decays faster than 
that of the shear modes, so at later times the asymptotic long-time tail 
[Eq. (3.4)] is reached. This is the final regime for systems of more than two 
spatial dimensions. For two-dimensional systems, after 102~ the super- 
long-time tail of the form {t[log(t /r)]  ~/2} -] is followed, which is the true 
asymptotic regime. However, for the system sizes and times considered in 
this paper, this super-long-time tail is not seen at all, at most of the simula- 
tions show.  (7"9"I0) AS mentioned in the introduction, we are mainly 
interested in the crossover from the Boltzmann regime to the algebraic 
long-time tails, where no theoretical results are available so far. The ring 
kinetic theory attempts to fill this gap and supply such theoretical values 
for the VACF in the intermediate-time regime. 

In the case of finite systems there is a correction to the VACF of 
(9(I/N) due to the finite number of particles in the system. This contribu- 
tion was analyzed for classical fluids in ref. 13 and for lattice gases in 
ref. 11. Its value in the latter case is given by (1 - f ) / N  [it is the q = 0 term 
in Eq. (3.3)]. From here on we will use the corrected VACF, denoted by 
O(t), in order to compare with the infinite-size results, i.e., ~k( t )=~( t )+ 
( 1 -- f )/N. 

4. RESULTS 

In this section we present the results of the numerical integration of 
Eq. (3.1) and its comparison with the available numerical data for the 
so-called FHP-III,  a seven-bit model defined on a triangular lattice, with 
up to six moving and one rest particle per site. (-'3~ We will compare our 
results with the full mode coupling theory and with the asymptotic long- 
time tail, as given in Eq. (3.4). 

4.1. In f in i te  Systems 

For infinite systems, the finite q-sum in (3.3) can be replaced by an 
integration over the first Brillouin zone, 
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v - ' ~ - ~  ,,o . f  
'7 (2n)" J, Bz 

where Vo is the volume of the unit cell (Vo = x,/3/2 for the triangular lattice). 
We perform this integral following a Gaussian integration procedure, as 
explained in ref. 16. We plot in Figs. 1 and 2 the decimal logarithm of the 
VACF ~(t) versus the decimal logarithm of time t. It is normalized to 
~(0) = I. We recall that for infinite systems there is no distinction between 
the corrected and uncorrected VACF [~,(t) and ~b(t)]. We present the 
results of ring kinetic theory (solid line) together with the numerical 
simulations (crosses). We also plot results of the full mode coupling theory 
(dotted line) and the asymptotic long-time Eq. (3.4) (dashed-dotted line). 
Furthermore, the long-dashed line is the exponential decay according to 
the Boltzmann approach, Eq. (2.7). The densities are f = 0 . 2 5  in Fig. 1 and 
f = 0.8 in Fig. 2. The numerical simulations have been done in systems with 
size V= 500 x 500 for times t ~< 100. Thus, as the maximum time is t = 100, 
there are no correlations induced by the boundary, as will be discussed in 
the next section. Furthermore, the finite-size corrections are smaller than 
2 x 10 - 6  and 2 x 10 -7 ,  respectively. We see in these two figures that the 
ring theory gives excellent predictions for all times, as the solid line passes 
almost through the simulation points. 

We can analyze the results in terms of the mean free time tmr, the 
average time between collisions, given by tmf---- --I/In(1 --co). The values of 
t ~  are tmr= 1.1 for f = 0 . 2 5  and tmf=0.3 for f = 0 . 8 .  For short times, 
t < 5tmf, the VACF is dominated by the Boltzmann value, Eq. (2.7), plotted 
in Fig. 1 with a long-dashed line. The higher the density, the shorter /mf, as 
in Fig. 2, where the Boltzmann regime lasts only for two time steps [the 
Boltzmann regime is always exact for t~<2, as can be seen from Eq. (3.1)]. 
Only after this initial period do sequences of correlated collisions start to 
appear, producing deviations from the Boltzmann value. 

After 10tmr the VACF is dominated by the full mode coupling 
contribution as seen in these figures. However, there is a crossover from 
the full mode coupling (dotted line in the figures), where contributions 
coming from the fast-decaying sound modes are still important, ~1'~ to the 
asymptotic long-time tail (dashed-dotted line), where only the shear modes 
survive. In this last case the VACF is given by Eq. (3.4). In order to check 
this result, we have fit the quantity tq~(t) to a constant, for the ring kinetic 
theory as well as the simulations results. The fits are done for times longer 
than 20tmr, up to 250tmr in some cases. The simulation values have been 
obtained averaging over more than 100 realizations. We compare them 
with the results of the mode coupling theory, Eq. (3.4), where the transport 
coefficients v and D have been replaced by their Boltzmann values. The 
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Fig. 1. Decimal logarithm of the velocity autocorrelation function vs. decimal logarithm of 
time t for the FHP-III  model at density f =  0.25 and a system size of 500 x 500. The VACF 
is normalized such that ~(0)= 1. Crosses are numerical simulations, and the solid line is the 
prediction of the ring theory. The dashed-dotted line represents the mode coupling theory 
with only shear contributions, while the dotted line is the result of the full mode coupling 
theory. The long-dashed line is the exponentially decaying VACF according to the Boltzmann 
approximation. 
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Fig. 2. The same as Fig. 1, for density f =  0.8. 
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Table I. 

Brito and van Velzen 

Amplitudes of the Long-Time Tails in Infinite Systems 
as a Function of the Density" 

Density Ring Simulation Mode coupling 

0.25 0.0231 0.0224 -t- 0.0002 0.0234 
0.40 0.0170 0.0163 _ 0.0001 0.0172 
0.50 0.0129 0.0125 + 0.0002 0.0132 
0.60 0.00930 0.00877 _ 0.00007 0.00944 
0.70 0.00596 0.00576 _ 0.00004 0.00610 
0.80 0.00317 0.00300 4- 0.00003 0.00323 

~ The second column is the result of the ring kinetic theory. The third one corresponds to the 
numerical simulations with their error bars, averaged over 100 realizations. The last column 
is the result of the mode coupling theory, Eq. (3.4). 

results are presented in Table I. We see that the results given by the ring 
kinetic theory agree very well with the asymptotic mode coupling result, as 
it should be, because the latter is an asymptotic limit of the former. The 
agreement with the numerical simulations is also very good, although the 
values do not coincide within the error bars. This is due to the fact that in 
the mode coupling result we have used the Boltzmann values for the 
transport coefficients. For the viscosity, they differ by about 20% with 
the simulated ones for the typical system sizes and times used in these 
simulations/~6'24) For  the diffusion coefficients the difference is much 
smaller, about 1%.(9) When we use the real values for the transport coef- 
ficients, the amplitude of the long-time tail as given by the mode coupling 
result of Eq. (3.4) increases typically by a factor of 4-5 %, improving the 
agreement with the numerical simulations. 

Finally, in the intermediate-time regime (between 5tmr and 10tmr) one 
could expect that more complicated recollisions (correlated collisions with 
more than two parallel propagators, rings within rings,...) would play an 
important role. However, as illustrated in Figs. 1 and 2, there is little room 
for contributions coming from these more complicated diagrams. Com- 
parison of the simulation data with the numerical evaluation of the ring 
kinetic theory at intermediate times shows that the discrepancy is smaller 
than 5 % at density f =  0.25 and smaller than 3 % at f =  0.8. Along these 
lines, calculations for this model for the shear correlation function give that 
collisions with three or more parallel propagators add corrections smaller 
than 0.1% at time t =  3 for all densities. (~6) Thus, the ring kinetic theory 
describes very well the complete time dependence of the VACF for infinite 
systems. 
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4.2. F i n i t e  S y s t e m s  
Simulations are usually carried out in finite systems with periodic 

boundary conditions. When looking at long times, dynamic effects may 
have propagated from the basic cell to one of the neighboring replicas. 
These interference effects are caused mainly by traveling sound waves that 
cross the systems through the boundaries. The result is a net increase of the 
VACF because of the following mechanism. A tagged particle with velocity 
v gives part of its momentum to the surrounding fluid particles, which can 
create a sound wave with direction parallel to v. This wave crosses the 
system through the boundary and hits the tagged particle from behind, 
producing a positive extra correlation between v(t) and v(0) that has to be 
added to the usual correlation between these two velocities. (25~ The effect 
described would be the opposite in systems without periodic boundary con- 
ditions but with elastic walls: the sound wave could reverse its velocity 
after bounding off the wall, producing an extra negative correlation. These 
extra correlations produced in the system are geometric rather than 
dynamical; they are produced by the special (finite-size) geometry of the 
system and they are absent in infinite systems. 

Because of the previous argument, the typical time in which the inter- 
ference effects is produced is the time that a sound wave needs to cross the 
system, i.e., between L/c o (x-direction) and v/-3L/2co (y-direction), where 
co is the speed of sound (c o = x / ~  -~ 0.65 in our model) and L is the linear 
size of the system (for a more detailed analysis of the characteristic times, 
we refer to ref. 11 ). Strictly speaking, the effects of finite size can already be 
seen immediately after t=L,,/2 time steps (where L,, is the smallest 
periodicity of the system). This is so because it is the time that two particles 
traveling in opposite directions need to cross the system and produce extra 
correlations. However, this effect just after t = Lm/2 is tiny, although existent. 
Only when the collective motion is set (like a sound wave) is the contribution 
noticeable, as discussed in the previous paragraph. There is one case in 
which this discussion is not fully applicable. In the case of the projected 
FCHC model, 126) when Lm = 2, important geometric correlations have been 
observed after only two time steps in the simulations c9~ and explained with 
the help of the ring kinetic theory, t27~ 

In order to evaluate the ring theory for finite systems with periodic 
boundary conditions, we keep the finite q sum in Eq. (3.3). The values of 
the reciprocal lattice vectors for a finite system are obtained by imposing 
the periodicity condition e i q ' ( r + L )  = e  iq ' r ,  where r is any vector of the lat- 
tice and L determines the periodicity of the system. For a triangular lattice 
of size L x L these vectors are q = (nJL) ql +_(n2/L) q2, nl, n2 = 0 ..... L - -  1, 
where ql = 2zc(- 1, 1/x/~) and q2 = 2re(0, 2/~/3) are the basis vectors of the 
reciprocal lattice. 
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Fig. 3. Corrected velocity autocorrelation function at density f = 0.2 and system size 60 x 60. 
Lines are drawn as for Fig. 1. 

Figure 3 shows the corrected VACF ~k(t) as predicted by the ring 
kinetic theory (solid line) versus time, together with the numerical simula- 
tions (crosses) for a 60 • 60 system at density f =  0.2 (the mean free time 
is t~s-,~ 1.4). The full mode coupling theory is plotted with a dotted line, 
and the asymptotic tail with a dotted-dashed line. It can be seen that the 
ring theory gives again excellent results with errors smaller at all times than 
3 % in Fig. 3 and 6 % in Fig. 4. For times shorter than 50 time steps, the 
VACF approaches the asymptotic tail, because the system did not have 
time to create geometric correlations through the boundaries. The inter- 
ference effects start at t ~- 50, reaching the maximum at t ___ 80 (in this case 
x/~L/2co ~-78) and decreasing again. The second maximum is produced at 
t --- 160 when the sound wave has crossed the system twice. This effect will 
continue creating more maxima in the VACF until it will finally reach the 
asymptotic state. In bigger systems the asymptotic regime is fully reached 
before the interference effects show up. 

In order to see more clearly the difference between the data, we plot 
in Fig. 4 the corrected VACF ~b(t) multiplied by time t vs. t, so the differen- 
ces are magnified. This is a system at density f =  0.5 and system size L = 50. 
The asymptotic long-time tail is transformed into the horizontal dashed- 
dotted line. Here we can see that the asymptotic long-time regime is not 
fully reached before the interference with sound modes coming from the 
neighbor replicas appear. In this case, as the system is smaller than in 
Fig. 3, we can observe three maxima, around t ~ 70, 130, 195 (for Fig. 3, 
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Fig. 4. Corrected velocity autocorrelation function multiplied by time t for density f = 0.5 
and system size L = 50. Lines are drawn as for Fig. 1. 

v/3L/2co ~-67). As we see, there is almost perfect agreement between the 
simulations and the ring theory, and also with the full mode coupling at 
long times. 

5. C O N C L U S I O N S  

We have presented in this paper the numerical evaluation of the ring 
kinetic theory applied to the velocity autocorrelation function in lattice 
gases. This theory only takes into account the simplest correlated event, 
two particles colliding at a point, propagating independently, and 
recolliding after a certain time. We have illustrated the results for both 
infinite and finite systems, showing excellent agreement with the numerical 
simulations. For infinite systems, the ring theory leads to the full mode 
coupling theory, showing the long-time tail t -L  For finite systems, with 
interference effects coming from the periodic boundary conditions, the ring 
theory describes very accurately the values of the VACF. Furthermore, as 
can be seen in the figures, the ring kinetic theory agrees completely with the 
numerical data for all time regimes. Thus, the dynamics of the VACF in the 
lattice gas is dominated by the uncorrelated collisions (Boltzmann type) at 
short times, and beyond that, the only important type of collision seems to 
be that with two parallel propagators, the ring collision. More complicated 
sequences, such as rings within rings, rings with more parallel propagators, 
or other correlated collisions, are not important in the description of the 
VACF. 
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